在現(xiàn)代交通管理和道路規(guī)劃中,交通流量和通行車輛的類型、速度是重要的參數(shù)。自動(dòng)獲取這些數(shù)據(jù)的方法大致可以分為兩類:一類是利用壓電、紅外、環(huán)形磁感應(yīng)線圈等傳感器獲得車輛本身的參數(shù),這類方法跟蹤識(shí)別率較高,但是容易損壞,安裝也不方便;還有一類就是基于圖像處理和模式識(shí)別的方法,克服了前面一類方法的局限,由于圖像處理識(shí)別技術(shù)的進(jìn)步和硬件性價(jià)比的大幅提高,有一定實(shí)用價(jià)值的系統(tǒng)已經(jīng)出現(xiàn)。這些系統(tǒng)的使用證明:圖像處理識(shí)別車
在現(xiàn)代交通管理和道路規(guī)劃中,交通流量和通行車輛的類型、速度是重要的參數(shù)。自動(dòng)獲取這些數(shù)據(jù)的方法大致可以分為兩類:一類是利用壓電、
紅外、環(huán)形磁感應(yīng)線圈等
傳感器獲得車輛本身的參數(shù),這類方法跟蹤識(shí)別率較高,但是容易損壞,安裝也不方便;還有一類就是基于圖像處理和模式識(shí)別的方法,克服了前面一類方法的局限,由于圖像處理識(shí)別技術(shù)的進(jìn)步和硬件性價(jià)比的大幅提高,有一定實(shí)用價(jià)值的系統(tǒng)已經(jīng)出現(xiàn)。這些系統(tǒng)的使用證明:圖像處理識(shí)別車型的方法日趨成熟,環(huán)境適應(yīng)能力較強(qiáng),能長期穩(wěn)定工作,但是計(jì)算量大,識(shí)別正確率不如感應(yīng)線圈、激光讀卡等方法高。本文的研究屬于后者,利用安裝在高處的單個(gè)靜止攝像頭監(jiān)視路面,利用運(yùn)動(dòng)分割與模型匹配的方法,檢測并統(tǒng)計(jì)多車道的車流信息。
整個(gè)識(shí)別過程分三步:分割、跟蹤和車型判定。運(yùn)動(dòng)目標(biāo)的分割常采用幀差法。在監(jiān)控場合,攝像頭大多是固定的,背景基本沒有變化或者變化緩慢,可以從圖像序列中逐漸取出背景圖像,然后利用幀差法檢測出目標(biāo)區(qū)域,同時(shí)還可以檢測靜止目標(biāo)。由于識(shí)別過程中利用二值邊緣圖像,所以本文在圖像分割中對(duì)輸入圖像進(jìn)行了梯度二值化處理。三維空間和二維圖像平面之間映射關(guān)系的確定,采用基于針孔模型的攝像機(jī)定標(biāo)來計(jì)算。對(duì)目標(biāo)區(qū)域的跟蹤,采用了區(qū)域特征向量的匹配跟蹤方法,減小了運(yùn)算量。由于圖像處理的方法很難提取輪數(shù)、軸距等車輛本身參數(shù),所以在圖像車型識(shí)別中一般都采用三維模型在圖像上
投影和車輛邊緣相匹配的方法。
1 背景重建和圖像分割
由于攝像頭固定,背景變化緩慢,因此,可以利用圖像序列逐漸恢復(fù)出背景圖像。其基本原理是:對(duì)每一個(gè)像素進(jìn)行監(jiān)控,如果在較長時(shí)間內(nèi)灰度不發(fā)生明顯變化,則認(rèn)為該像素屬于背景區(qū)域,將該像素灰度值復(fù)制到背景緩沖區(qū),否則屬于前景區(qū)域[1]。由于光照以及車輛陰影等影響,采用這種方法恢復(fù)出來的背景圖像存在較大噪聲。因此在實(shí)驗(yàn)中對(duì)原始輸入圖像進(jìn)行了梯度二值化處理,然后進(jìn)行背景重建。這樣可以減小陰影的干擾,加快背景重建速度。由于識(shí)別是利用邊緣信息,所以梯度化對(duì)后面的識(shí)別過程沒有影響。
在得到背景邊界圖像后,利用幀差法可以分割出感興趣的目標(biāo)。但是,如果目標(biāo)區(qū)域和背景邊界重合(值都為"1"),相減之后該目標(biāo)區(qū)域被錯(cuò)誤判定為背景區(qū)域 (值為"0")。為了減小錯(cuò)誤判決區(qū)域,本文在分割時(shí)參考了相鄰兩幀的二值化幀差fdmask,判決準(zhǔn)則如下:如果fdmask中某像素為"0",則輸入圖像和背景圖像相應(yīng)像素相減;否則直接復(fù)制輸入圖像中相應(yīng)的像素值。分割結(jié)果經(jīng)過噪聲消除、形態(tài)學(xué)平滑邊界、種子填充、區(qū)域標(biāo)記等后續(xù)處理,就分離出了目標(biāo)。
2 攝像機(jī)定標(biāo)
在模型匹配中,需要從二維圖像恢復(fù)目標(biāo)三維信息,同時(shí)將三維模型投影到圖像平面上,因此必須計(jì)算三維空間到圖像平面的投影關(guān)系矩陣。這個(gè)過程就是攝像機(jī)定標(biāo)。本文采用基于針孔模型的攝像機(jī)定標(biāo)方法,其基本原理是利用給定的一組三維世界的點(diǎn)坐標(biāo)和這些點(diǎn)在圖像中的坐標(biāo),求解線性方程組,計(jì)算**投影矩陣中的各個(gè)元素[2]。**投影矩陣如下:
其中:(u,v)是圖像坐標(biāo),(w,w,w)是三維坐標(biāo),M為投影矩陣,c為三維空間中點(diǎn)到攝像機(jī)鏡頭的矢量在主光軸上的投影距離。要求解M的各個(gè)元素,根據(jù)文獻(xiàn)[2]介紹需要6個(gè)點(diǎn)的投影關(guān)系組成
12階的方程組,通常方程組不獨(dú)立,沒有唯一解,采用近似計(jì)算的誤差較大。在(1)式基礎(chǔ)上經(jīng)過變形,將12階方程分拆成三個(gè)4階方程組,只需要利用4個(gè)點(diǎn)的投影關(guān)系,方程組的階次也只有4階,可以有效避免出現(xiàn)奇異矩陣,求出唯一解。由式(1)可以得出: