本文介紹了歐勝微電子公司最新一代音頻數字-模擬轉換器(DAC)的架構,專注于設計用于消費電子應用中提供高電壓線驅動器輸出的新器件系列。
基本原理
增量累加調制器通常用復雜的術語進行描述,使用數學公式、狀態(tài)表和理論模型。盡管所有這些對于理解增量累加調制的復雜性是必要的,對于本文的目的來說關鍵是了解SDM架構的好處以及他們在音頻轉換器IC中的應用。
增量累加調制的兩個基本原理是:
● 過采樣
采樣過程產生量化誤差;輸出處的采樣電平和期望的輸出電平之間的差值。量化噪聲的能量取決于音頻轉換器的分辨率,分散到采樣頻率的帶寬上。
奈奎斯特采樣原理表明,為準確對一個信號進行從模擬到數字域的轉換,信號必須在信號最高頻率分量的頻率的兩倍進行采樣。最高頻率分量也稱為奈奎斯特頻率。對于音頻,典型的帶寬在20Hz到20KHz之間,采樣頻率傾向于44.1KHz(對于CD音頻)到192kHz(DVD音頻)。
采樣頻率低于奈奎斯特頻率的兩倍,會導致混疊,輸入信號以奈奎斯特頻率附近的鏡像折疊回到音頻頻段。
在SDM轉換器中,數據轉換器工作在遠遠高于奈奎斯特頻率兩倍的頻率上,通常是在最低采樣頻率的128倍~768倍。
過采樣過程將量化噪聲在比其他數據轉換方法更寬的帶寬上擴散量化噪聲,因此在音頻頻段內的量化噪聲就非常少。
● 噪聲整形
除了在很寬的頻譜上擴散量化噪聲外,SDM還用作低通濾波器來對輸入信號濾波,一個高通濾波器對量化噪聲濾波,將量化噪聲推倒音頻頻帶之外。對于ADC,這允許在不減少SNR的情況下,轉換器使用更少的比特數。
過采樣的要求意味著增量累加調制器設計最適合低帶寬應用,例如音頻數據轉換,例如音頻數據轉換。
設計考慮
基于SDM的架構很復雜,設計師有很多選項來針對特定應用優(yōu)化他們的設計。關鍵的折中考慮階數、分辨率和架構拓撲。
增量累加調制器的階數:
一階和二階SDM本身是很穩(wěn)定的,產生很大的帶內噪聲,但是具有很低的帶外噪聲。高階SDM能有條件穩(wěn)定,會產生更大的帶外噪聲,因此對時鐘抖動很敏感。
歐勝微電子公司最近的DAC架構基于二階增量累加調制解調器,驅動時鐘速度很高以減少帶內噪聲,因此對于時鐘抖動不敏感。
● DAC分辨率
DAC分辨率的增加降低了量化誤差,因此改善了DAC的理論信噪比(SNR)。
對于每個比特的分辨率,理論的最大SNR近似為6xn,這里n是比特位數。因此,24比特的音頻DAC理論的最大SNR接近144dB。