在研發(fā)超電容時,人們并沒有發(fā)現(xiàn)什么新的物理定律。實際上,有關(guān)超電容的原理仍然要追溯到德國物理學(xué)家赫爾姆霍茲。與普通電容器一樣,超電容也是采用在兩個“極板”之間儲存電荷的形式來儲存能量的。電容值的大小與極板的面積以及兩極板之間所用的介電材料成正比,與兩極板之間的距離成反比。但是,超電容的原理有所不同。
在用超電容實現(xiàn)巨大的電容之前,我們就已經(jīng)掌握了電解化學(xué)(electrolytics)的原理。超電容不是電解化學(xué),但是了解電解化學(xué)有助于我們認識超電容這一新型的技術(shù)。
超電容的結(jié)構(gòu)不再是那種中間填充介電材料的平板電極(或者卷成管狀的平板電極)結(jié)構(gòu)——就像三明治中間的花生醬。在超電容中,電荷的充/放電發(fā)生在電解質(zhì)中多孔碳精材料或多孔金屬氧化物之間的分界面上。
Helmholtz層引起了一種稱為雙層電容的效應(yīng)。當把一個直流電壓加載到超電容中多孔碳精電極的兩端,用于電荷補償?shù)年栯x子或陰離子就會在帶電電極周圍的電解液中發(fā)生累積。如果分界面上不出現(xiàn)電子遷移,那么“兩層”分離的電荷(金屬一側(cè)的電子或電子空穴,以及界面邊界電解液一側(cè)的陽離子或陰離子)就會出現(xiàn)在分界面上.
電池存儲的是以瓦時計算的能量,電容存儲的是以瓦特計算的功率。
電池以長時間恒定的化學(xué)反應(yīng)來提供電能,充電時間相對較長,對充電電流的特性要求比較苛刻。相反,電容的充電是通過加載在其兩端的電壓來完成的,充電速度在很大程度上取決于外部電阻。電池能夠在較長一段時間內(nèi)以基本恒定的電壓輸出電能。而電容的放電速度很快,輸出電壓呈指數(shù)規(guī)律衰減。
電池只能夠在有限的充/放電次數(shù)內(nèi)保持良好的工作狀態(tài),充/放電的次數(shù)取決于它們放電的程度。電容,尤其是超電容,可以反復(fù)充/放電達數(shù)千萬次。(這也是超電容不同于電解化學(xué)的一個重要方面——它們不像電解化學(xué)的工作過程那樣具有電極板充放電次數(shù)的限制。