磁性納米材料技術
一、納米材料的基本概念
1、納米是什么? 一種長度單位,一等于十億分之一米,千分之一微米。大約是三、四個原子的寬度。納米的英文名稱是:nano meter,簡稱nm。
2、納米科學技術 納米科學技術是用單個原子、分子制造物質的科學技術。納米科學技術是以許多現(xiàn)代先進科學技術為基礎的科學技術,它是現(xiàn)代科學(混沌物理、量子力學、介觀物理、分子生物
學)和現(xiàn)代技術(計算機技術、微電子和掃描隧道顯微鏡技術、核分析技術)結合的產(chǎn)物,又將引發(fā)一系列新的科學技術,例如納電子學、納米材科學、納機械學等。納米科學技術被認為是世紀之交出
現(xiàn)的一項高科技。 納米材料與納米粒子
1、納米材料(nano material),納米材料又稱為超微顆粒材料,由納米粒子組成。
2、納米粒子(nano particle),納米粒子也叫超微顆粒,一般是指尺寸在1~100nm間的粒子,是處在原子簇和宏觀物體交界的過渡區(qū)域,從通常的關于微觀和宏觀的觀點看,這樣的系統(tǒng)既非典型的微觀
系統(tǒng)亦非典型的宏觀系統(tǒng),是一種典型人介觀系統(tǒng),它具有表面效應、小尺寸效應和宏觀量子隧道效應。當人們將宏觀物體細分成超微顆粒(納米級)后,它將顯示出許多奇異的特性,即它的光學、熱
學、電學、磁學、力學以及化學方面的性質和大塊固體時相比將會有顯著的不同。 納米材料的奇異特性
1、表面效應:粒子直徑減少到納米級,不僅引起表面原子數(shù)的迅速增加,而且納米粒子的表面積、表面能都會迅速增加。這主要是因為處于表面的原子數(shù)較多,表面原子的晶場環(huán)境和結合能與內部原子
不同所引起的。表面原子周圍缺少相鄰的原子,有許多懸空鍵,具有不飽和性質,易與其它原子相結合而穩(wěn)定下來,故具有很大的化學活性,晶體微�;橛羞@種活性表面原子的增多,其表面能大大增
加。
2、小尺寸效應:指納米粒子尺寸下降到一定值時,費米能級附近的電子能級由連續(xù)能級變?yōu)榉至⒛芗壍默F(xiàn)象。這一效應可使納米粒子具有高的光學非線性、特異催化性和光催化性質等。
3、體積效應:指納米粒子的尺寸與傳導電子的德布羅意波長相當或更小時,周期的邊界條件將被破壞,磁性、內壓、光吸收、熱阻、化學活性、催化性及熔點等都較普通粒子發(fā)生了很大的變化。如光吸
收顯著增加并產(chǎn)生吸收峰的等離子共振頻移,由磁有序態(tài)向磁無序態(tài),超導相向正常相轉變等。
4、宏觀量子隧道效應:微觀粒子具有貫穿勢壘的能力稱為隧道效應。近來年,人們發(fā)現(xiàn)一些宏觀量,例如微顆粒的磁化強度、量子相干器件中的磁通量以及電荷等亦具有隧道效應,它們可以穿越宏觀系
統(tǒng)的勢壘而產(chǎn)生變化,故稱為宏觀的量子隧道效應MQT(Macroscopic Quantum Tunneling)。這一效應與量子尺寸效應一起,確定了微電子器件進一步微型化的極限,也限定了采用磁帶磁盤進行信息儲
存的最短時間。 納米材料的分類
1、納米顆粒型材料:應用時直接使用納米顆粒的形態(tài)稱為納米顆粒型材料。
2、納米固體材料:納米固體材料通常指由尺寸小于15納米的超微顆粒在高壓力下壓制成型,或再經(jīng)一定熱處理工序后所生成的致密型固體材料。
3、納米膜材料:顆粒膜材料是指將顆粒嵌于薄膜中所生成的復合薄膜,通常選用兩種在高溫互不相溶的組元制成復合靶材,在基片上生成復合膜,當兩組份的比例大致相當時。就生成迷陣狀的復合膜
,因此改變原始靶材中兩種組份的比例可以很方便地改變顆粒膜中的顆粒大小與形態(tài),從而控制膜的特性。對金屬與非金屬復合膜,改變組成比例可使膜的導電性質從金屬導電型轉變?yōu)榻^緣體。
4、納米磁性液體材料:磁性液體是由超細微粒包覆一層長鍵的有機表面活性劑,高度彌散于一定基液中,而構成穩(wěn)定的具有磁性的液體。