在現(xiàn)實(shí)世界中,Power(權(quán)力)就意味著金錢(qián)-越大越好;而對(duì)于 µC 外圍器件來(lái)說(shuō)則正好相反。隨著消費(fèi)市場(chǎng)的不斷發(fā)展,終端應(yīng)用產(chǎn)品的體積不斷縮小,Power(功率)越小越好。便攜性和低功耗成為最優(yōu)先考慮的事情,并促成處理器內(nèi)核電壓降至1.8 v 的行業(yè)動(dòng)向,也就不足為奇了。盡管與 3.3 v 和 5 v 型號(hào)相比,這些低功耗器件消耗的能量確實(shí)要低得多,但是低功耗處理器并非都一樣。設(shè)計(jì)出色的低功耗應(yīng)用需要同時(shí)考慮終端應(yīng)用的需求和各種可用的 µC 特性。
設(shè)計(jì)人員可能會(huì)提出以下問(wèn)題:是否能夠重新充電?尺寸能夠做到多��?典型的工作時(shí)間是多少?速度必須多快?要連接哪種類(lèi)型的外圍器件?這些答案將最終為確立設(shè)計(jì)標(biāo)準(zhǔn)和功率要求積累原始資料。
圖 1:典型 µC 環(huán)境中的器件
處理功率首先應(yīng)該考慮CPU的處理功率,一般來(lái)說(shuō),CPU 是功耗最高的外圍器件。處理器全速運(yùn)行時(shí),耗電量非常大,因此 CPU 處于待機(jī)或關(guān)閉狀態(tài)的時(shí)間越多,電池壽命越長(zhǎng)。例如,4 位處理器比 32 位處理器的功率消耗低;而處于休眠或停機(jī)狀態(tài)的任何位數(shù)的處理器均比工作中的處理器的功耗要低。因此,如果 32 位處理器執(zhí)行功能所耗的時(shí)間僅為 4 位處理器的1/10,那么,它在整個(gè)系統(tǒng)生命周期內(nèi)要少消耗 9/10 的功率。因此,大多數(shù)制造商建議以較高的頻率運(yùn)行 CPU,迅速完成任務(wù),并立即返回到功耗最低的休眠狀態(tài)。總之,在選擇處理器速度時(shí),要考慮能夠迅速處理預(yù)期工作量并盡可能長(zhǎng)時(shí)間地處于休眠狀態(tài)。
首先應(yīng)該考慮 CPU 的處理功率,一般來(lái)說(shuō),CPU 是功耗最高的外圍器件。處理器全速運(yùn)行時(shí),耗電量非常大,因此 CPU 處于待機(jī)或關(guān)閉狀態(tài)的時(shí)間越多,電池壽命越長(zhǎng)。例如,4 位處理器比 32 位處理器的功率消耗低;而處于休眠或停機(jī)狀態(tài)的任何位數(shù)的處理器均比工作中的處理器的功耗要低。因此,如果 32 位處理器執(zhí)行功能所耗的時(shí)間僅為 4 位處理器的1/10,那么,它在整個(gè)系統(tǒng)生命周期內(nèi)要少消耗 9/10 的功率。因此,大多數(shù)制造商建議以較高的頻率運(yùn)行 CPU,迅速完成任務(wù),并立即返回到功耗最低的休眠狀態(tài)�?傊�,在選擇處理器速度時(shí),要考慮能夠迅速處理預(yù)期工作量并盡可能長(zhǎng)時(shí)間地處于休眠狀態(tài)。
其次應(yīng)考慮大多數(shù)便攜式應(yīng)用的中斷服務(wù)例程 (ISR)。ISR 會(huì)定期喚醒處理器執(zhí)行預(yù)排程序的或用戶(hù)啟動(dòng)的任務(wù),然后讓處理器返回到休眠狀態(tài)。進(jìn)入和退出 ISR 所用的 CPU 時(shí)鐘周期越少越好。事實(shí)上,許多 ISR(例如端口 I/O)有多個(gè)標(biāo)志,這些標(biāo)志可能會(huì)觸發(fā)同一中斷。采用程序計(jì)數(shù)器相對(duì)尋址方式的處理器會(huì)大大縮短識(shí)別和處理適當(dāng)中斷源所需的必要周期-尤其是在鍵盤(pán)掃描應(yīng)用中。如果 ISR 編寫(xiě)得好,通過(guò)限制喚醒 CPU、執(zhí)行任務(wù)和返回休眠狀態(tài)所需的程序分支,可以確保處理時(shí)間最短。采用中斷向量表的處理器中,程序計(jì)數(shù)器加載 ISR 地址,這種處理器有助于減少額外的程序分支,并降低功耗。自動(dòng)上下文保存以及算術(shù)邏輯單元 (ALU) 標(biāo)志和功率模式的恢復(fù)功能也可以促進(jìn)節(jié)能。
此外,由于在低速或時(shí)鐘停止的環(huán)境中,動(dòng)態(tài)內(nèi)核處理器不能保持?jǐn)?shù)據(jù)的完整性,因而應(yīng)盡可能使用靜態(tài)內(nèi)核處理器。
工作模式休眠和“低功耗”模式也是必須考慮的重要問(wèn)題。通過(guò)減慢喚醒時(shí)間實(shí)現(xiàn)低功耗狀態(tài)(或關(guān)閉對(duì)喚醒器件非常重要的功能)會(huì)增加功耗,而不是降低功耗。
休眠和“低功耗”模式也是必須考慮的重要問(wèn)題。通過(guò)減慢喚醒時(shí)間實(shí)現(xiàn)低功耗狀態(tài)(或關(guān)閉對(duì)喚醒器件非常重要的功能)會(huì)增加功耗,而不是降低功耗。
大多數(shù)低功耗器件的休眠或空閑模式會(huì)關(guān)閉處理器和時(shí)鐘,通常流耗低于一微安。然后,需要 I/O 中斷把處理器從休眠模式喚醒。使用 32kHz 時(shí)鐘驅(qū)動(dòng)定時(shí)器或?qū)崟r(shí)時(shí)鐘能以更靈活的方式喚醒處理器�;�32kHz 振蕩器的功耗不像“深度睡眠”模式那樣低,但