目前,工業(yè)用電的三分之二為電機(jī)所消耗,而在居民用電中這一比例亦高達(dá)四分之一,有鑒于此,電機(jī)的效率問題繼續(xù)受到更大的關(guān)注。標(biāo)準(zhǔn)的電機(jī)應(yīng)用完全能以更高的能量效率運(yùn)行,就電能到機(jī)械能的轉(zhuǎn)換而言,大多數(shù)電機(jī)的效率較低。這意味著它們浪費(fèi)了大量的能量,以發(fā)熱的形式散失掉,而未能變換為有用的機(jī)械能。
此外,既然一個(gè)未受控制的電機(jī)必須克服瞬態(tài)機(jī)械負(fù)載的影響,設(shè)計(jì)者除了加大電機(jī)尺寸外很難作出其它的選擇,而一個(gè)尺寸過大的AC感應(yīng)電機(jī)(最常用的電機(jī)類型),其效率必然更低,因?yàn)殡姍C(jī)是在小于其設(shè)計(jì)負(fù)載的條件下工作。
提高電機(jī)的效率
這些問題可以通過智能控制來(lái)克服,智能控制可以從兩個(gè)方面大大提高電機(jī)的效率。首先,智能控制采用了先進(jìn)的算法來(lái)提高電機(jī)的運(yùn)行性能。最常見的方法是對(duì)AC感應(yīng)電機(jī)的運(yùn)行進(jìn)行矢量控制,可以讓電機(jī)采用合理的尺寸,以實(shí)現(xiàn)最優(yōu)的效率。此外,速度可調(diào)也使系統(tǒng)能以更高的效率運(yùn)行。例如,一個(gè)矢量控制的可調(diào)速驅(qū)動(dòng)可避免使用傳動(dòng),從而減少系統(tǒng)機(jī)械部件帶來(lái)的能量損耗。
其次,由于系統(tǒng)采用智能控制,就有可能將現(xiàn)有的電機(jī)更換為效率更高的電機(jī)。在電器中逐步采用永磁電機(jī)就是這一發(fā)展趨勢(shì)的體現(xiàn)。
永磁同步電機(jī)從本質(zhì)上來(lái)說比AC感應(yīng)電機(jī)的效率更高,因?yàn)樗鼈儧]有后者與感應(yīng)轉(zhuǎn)子電流相關(guān)的傳導(dǎo)損耗,它們還具有更優(yōu)良的機(jī)械特性,如力矩紋波更低、運(yùn)行更加安靜,而且在產(chǎn)生同樣的機(jī)械功率輸出時(shí),它們的體積更小。開關(guān)磁阻電機(jī)在一個(gè)固定或者中度變速的應(yīng)用中也可以表現(xiàn)出極高的效率,而這些應(yīng)用需要DSP控制器才具備精確、復(fù)雜控制能力。
所有這些解決方案都有一個(gè)共同點(diǎn):它們利用了密集的數(shù)值計(jì)算來(lái)提高系統(tǒng)的性能。矢量控制算法需要先對(duì)轉(zhuǎn)子磁通量的方位進(jìn)行測(cè)量或者預(yù)測(cè),然后對(duì)一個(gè)多相繞組產(chǎn)生的定子通量位置進(jìn)行優(yōu)化,在給定的通量結(jié)構(gòu)下產(chǎn)生最大的力矩。對(duì)于一臺(tái)永磁電機(jī)而言,定子通量需要隔開90度(電角度),這是產(chǎn)生力矩的最佳方式。因?yàn)樗a(chǎn)生的力矩直接與兩個(gè)通量間夾角的正弦成正比(在AC感應(yīng)電機(jī)中,由于通量磁化分量的緣故,通量間的關(guān)系更為復(fù)雜,但基本原理是相同的)。
智能控制的實(shí)現(xiàn)
要實(shí)現(xiàn)經(jīng)濟(jì)性的智能控制時(shí),面對(duì)的挑戰(zhàn)就在于涉及的算法在數(shù)學(xué)上的復(fù)雜性,這是因?yàn)榇蠖鄶?shù)微控制器(MCU)不能以實(shí)時(shí)方式處理如此復(fù)雜的計(jì)算。然而新一代廉價(jià)的數(shù)字信號(hào)處理器(DSP)控制器提供了智能控制所需的計(jì)算能力,以及片上系統(tǒng)(SOC)集成方式和有助于簡(jiǎn)化電機(jī)控制系統(tǒng)設(shè)計(jì)的軟件開發(fā)支持。