近年來(lái)發(fā)展起來(lái)的磁性納米粒子除了具有一般納米粒子的獨(dú)特效應(yīng)之外,還具有優(yōu)異的磁學(xué)性能,具有廣闊的應(yīng)用前景。為了進(jìn)一步開(kāi)發(fā)磁性納米粒子的應(yīng)用潛力,目前尚有許多問(wèn)題需要進(jìn)一步探討,如發(fā)展和完善磁性納米粒子的制備技術(shù)以及自組裝技術(shù),擴(kuò)大制備范圍(如制備具有磁光、磁電以及磁熱性能的新型納米復(fù)合材料);加強(qiáng)對(duì)磁性納米粒子的理論研究工作,利用多種表征手段深入研究它的結(jié)構(gòu)和性能,使這一新材料真正發(fā)揮其最大的潛能。
1 引言
當(dāng)鐵磁材料的粒子處于單疇尺寸時(shí),矯頑力(Hc)將呈現(xiàn)極大值,粒子進(jìn)入超順磁性狀態(tài)。這些特殊性能使各種磁性納米粒子的制備方法及性質(zhì)的研究愈來(lái)愈受到重視[1]。開(kāi)始,多以純鐵(-Fe)納米粒子為研究對(duì)象,制備工藝幾乎都是采用化學(xué)沉積法。后來(lái),出現(xiàn)了許多新的制備方法,如濕化學(xué)法和物理方法,或兩種及兩種以上相結(jié)合的方法制備具有特殊性能的磁性納米粒子。這些粒子在磁記錄材料、磁性液體、生物醫(yī)學(xué)、傳感器、催化、永磁材料、顏料、雷達(dá)波吸波材料以及其他領(lǐng)域有著廣闊的應(yīng)用前景。
磁性納米粒子之所以具有廣闊的應(yīng)用前景,是因?yàn)樗哂性S多不同于常規(guī)材料的獨(dú)特效應(yīng),如量子尺寸效應(yīng)、表面效應(yīng)、小尺寸效應(yīng)及宏觀(guān)量子隧道效應(yīng)等,這些效應(yīng)使磁性納米粒子具有不同于常規(guī)材料的光、電、聲、熱、磁、敏感特性[2]。
當(dāng)磁性納米粒子的粒徑小于其超順磁性臨界尺寸時(shí),粒子進(jìn)入超順磁性狀態(tài),無(wú)矯頑力和剩磁。眾所周知,對(duì)于塊狀磁性材料(如Fe、Co、Ni),其體內(nèi)往往形成多疇結(jié)構(gòu)以降低體系的退磁場(chǎng)能。納米粒子尺寸處于單疇臨界尺寸時(shí)具有高的矯頑力[3]。小尺寸效應(yīng)和表面效應(yīng)導(dǎo)致磁性納米粒子具有較低的居里溫度[4]。另外,磁性納米粒子的飽和磁化強(qiáng)度(Ms)比常規(guī)材料低,并且其比飽和磁化強(qiáng)度隨粒徑的減小而減小。當(dāng)粒子尺寸降低到納米量級(jí)時(shí),磁性材料甚至?xí)l(fā)生磁性相變。
2 磁性納米粒子的合成方法
磁性納米粒子的制備是其應(yīng)用的基礎(chǔ),目前已經(jīng)發(fā)展了許多種合成和制備方法,通?煞譃榛瘜W(xué)法和物理法。表1~3概括了這些方法的制備工藝、特點(diǎn)及應(yīng)用等。
3 磁性納米粒子的應(yīng)用
3.1 在磁記錄材料方面的應(yīng)用
目前磁記錄介質(zhì)仍以磁性氧化物微粒磁介質(zhì)為主,為了提高磁記錄密度,磁記錄介質(zhì)總的趨勢(shì)是向高矯頑力方向發(fā)展。在顆粒型磁存儲(chǔ)介質(zhì)中,記錄單元的尺寸變得越來(lái)越小,磁性顆粒的尺寸已向納米尺度方向過(guò)渡,由于磁性納米粒子具有單磁疇結(jié)構(gòu)及矯頑力很高的特征,用它來(lái)做磁記錄材料可以提高信噪比,改善圖像質(zhì)量,為高密度磁存儲(chǔ)創(chuàng)造了條件。
含Co、Ti的鋇鐵氧體粒子作為高密度磁記錄介質(zhì)已引起人們極大興趣。采用共沉淀、水熱合成等方法制出的納米級(jí)Co代換-Fe2O3、Co-Ti代換BaFe12O19氧化物粒子磁粉,利用真空蒸發(fā)、濺射等工藝制成的金屬納米粒子磁粉、連續(xù)薄膜介質(zhì)相繼投放市場(chǎng),推動(dòng)了高密度磁記錄的快速發(fā)展。
3.2 在磁性液體方面的應(yīng)用
利用磁性納米粒子的超順磁性研制成了磁性液體(又叫鐵磁流體),它是將磁性納米粒子通過(guò)表面活性劑的包覆,使其均勻穩(wěn)定地分散在某種基(載)液之中而形成的穩(wěn)定膠狀體物質(zhì)。這種材料具有液體的流動(dòng)性和磁體的磁性,它的基本參數(shù)是飽和磁化強(qiáng)度,其大小主要由構(gòu)成膠體的磁性粒子決定。最初的磁性顆粒,是采用真空化學(xué)氣相沉積(CVD)或球磨法制得的金屬(Fe,Co,Ni)或合金粒子,平均粒徑5~7nm,制成的磁性液體的=120~150mT。后來(lái),又制成了低成本的氧