一、引言CCD(ChargeCoupledDevice),即電荷耦合器件,是一種金屬-氧化物-半導體結構的新型器件,其基本結構是一種密排的MOS電容器,能夠存儲由入射光在CCD像敏單元激發(fā)出的光信息電荷,并能在適當相序的時鐘脈沖驅動下,把存儲的電荷以電荷包的形式定向傳輸轉移,實現(xiàn)自掃描,完成從光信號到電信號的轉換。這種電信號通常是符合電視標準的視頻信號,可在電視屏幕上復原成物體的可見光像,也可以將信號存儲在磁帶機內,或輸入計
一、引言
CCD(Charge Coupled Device) ,即電荷耦合器件,是一種金屬-氧化物-半導體結構的新型器件,其基本結構是一種密排的
MOS電容器,能夠存儲由入射光在CCD像敏單元激發(fā)出的光信息電荷,并能在適當相序的時鐘脈沖驅動下,把存儲的電荷以電荷包的形式定向傳輸轉移,實現(xiàn)自掃描,完成從光信號到電信號的轉換。這種電信號通常是符合電視標準的視頻信號,可在電視屏幕上復原成物體的可見光像,也可以將信號存儲在磁帶機內,或輸入計算機,進行圖像增強、識別、存儲等處理。因此,CCD器件是一種理想的攝像器件。
二、CCD的主要特性
與真空攝像管相比,固體攝像器件有如下特點:
(1)體積小、重量輕、耗電少、啟動快、壽命長和可靠性高。
(2)光譜響應范圍寬,一般的CCD器件可工作在
400nm~1
100nm波長范圍內。最大響應約在900nm。在紫外區(qū),由于硅片自身的吸收,量子效率下降,但采用背部照射減薄的CCD,工作波長極限可達
100nm。
(3)靈敏度高。CCD具有很高的單元光量子產(chǎn)率,正面照射的CCD的量子產(chǎn)率可達20%,若采用背部照射減薄的CCD,其單元量子產(chǎn)率高達90%以上。
(4)動態(tài)響應范圍寬。CCD的動態(tài)響應范圍在4個數(shù)量級以上,最高可達8個數(shù)量級。
(5)分辨率很高。線陣器件有7000像元,可分辨最小尺寸7mm;面陣器件己達4096像元×4096像元,CCD攝像機分辨率已超過1000線以上。
(6)易與微光像增強器級聯(lián)耦合,能在低光條件下采集信號。
(7)抗過度曝光性能。過強的光會使光敏元飽和,但不會導致芯片毀壞。
基于以上特性,將CCD用于微光電視系統(tǒng)中,不僅可以提高系統(tǒng)終端顯示圖象的質量,而且可以利用計算機對圖像進行增強、識別、存儲等操作。
三、CCD在微光電視系統(tǒng)中的應用方式
CCD微光電視系統(tǒng)組成結構如圖1所示。其中,CCD必須與光像增強器相耦合才能發(fā)揮作用。微光像增強器與CCD耦合方式有三種:
(1)
光纖光錐耦合方式
光纖光錐也是一種光纖傳像器件,一頭大,一頭小?蓪⑽⒐夤芄饫w面板熒光屏(通常,Φ有效為18、25或30mm)輸出的經(jīng)增強的圖像,耦合到CCD光敏面(對角線尺寸通常是12.7mm和16.9mm)上,從而可達到微光攝像的目的。
這種耦合方式的優(yōu)點是熒光屏光能的利用率較高,缺點是:需要帶光纖面板輸入窗的CCD,對背照明模式CCD的光纖耦合,有離焦和
MTF下降問題;此外,光纖面板、光錐和CCD均為若干個像素單元陣列的離散式成像元件,因而,三陣列間的幾何對準損失和光纖元件本身的疵病對最終成像質量的影響都是值得認真考慮并予嚴格對待的問題。
(2) 中繼透鏡耦合方式
采用中繼透鏡也可將微光管的輸出圖像耦合到CCD輸入面上,其優(yōu)點是調焦容易,成像清晰,對正面照明和背面照明的CCD均可適用;缺點是光能利用率低(≤10%),儀器尺寸稍大,系統(tǒng)雜光干擾問題需特殊考慮和處理。
(3)
電子轟擊式CCD,即EBCCD方式