如果要保留緊湊磚型模式的同時(shí)縮減電源尺寸,就會(huì)遇到如何處理高功率密度所需的散熱問題,如何將所有必要組件集成在有限的空間內(nèi)等等問題。本文就是介紹針對(duì)這一問題所展開的既可以節(jié)省空間又能夠簡(jiǎn)化48V分布式電源架構(gòu)(DPA)應(yīng)用的前端設(shè)計(jì)方法。
為了在保留緊湊磚型模式的同時(shí)縮減電源尺寸,電源制造商必須降低磚型模塊的高度,并(或)盡量將外部的供電元件移至磚型模塊內(nèi)部。但同時(shí)采取上述兩種做法卻給電源設(shè)計(jì)者帶來了諸多挑戰(zhàn),其中包括:如何處理高功率密度所需的散熱問題,如何將所有必要組件集成在有限的空間內(nèi)等等。
為了解決這些挑戰(zhàn),西恩迪技術(shù)(C&D)公司電力電子部的工程師們的目標(biāo)是創(chuàng)造一種600瓦的磚型模塊原型,既可以節(jié)省空間又能夠簡(jiǎn)化48V分布式電源架構(gòu)(DPA)應(yīng)用的前端設(shè)計(jì)。
碳化硅半導(dǎo)體
通過升壓轉(zhuǎn)換器集成滿足EN61000-3-2要求的有源PFC是原型設(shè)計(jì)的一個(gè)主要目標(biāo)。設(shè)計(jì)的難點(diǎn)在于:為了將模塊高度保持在標(biāo)稱半英寸高模塊的公差范圍內(nèi),很明顯需要使用的開關(guān)頻率將大大高于離散PFC階段通常所具有的開關(guān)頻率。這意味著,為了讓PFC級(jí)滿足規(guī)格要求并且將功耗減至最低,需要復(fù)合緩沖電路或一系列肖特基二極管的保護(hù)。不幸的是,這兩種作法所需要的空間都違背了原型設(shè)計(jì)的微型化目標(biāo)。好在設(shè)計(jì)人員已經(jīng)找到了一種解決方法,即最新的碳化硅(SiC)半導(dǎo)體技術(shù)。
電子工程師們十分熟悉一條自然定律:器件的額定電壓越高,其開關(guān)速度就越慢。正因?yàn)槿绱?SiC二極管(額定電壓為600伏或以上,可輕松的在升壓電源電壓下工作,而減緩開關(guān)速度的電容極小)所呈現(xiàn)的解決方案幾乎就像魔術(shù)一樣解決了大幅度降低熱量的難題,以往這些熱量需要靠基底和散熱片散發(fā)。因此,C&D公司選擇SiC二極管進(jìn)行原型設(shè)計(jì),利用其在極高頻率下工作的能力,為它提供所需要的保護(hù)。
低損耗拓?fù)浼軜?gòu)
對(duì)熱性能的嚴(yán)格要求可以通過在轉(zhuǎn)換器內(nèi)盡量減少開關(guān)損耗得以緩解。全橋式轉(zhuǎn)換器所使用的模塊化方法對(duì)損耗的產(chǎn)生有重大影響。對(duì)這一問題的了解促進(jìn)了中間總線DC/DC轉(zhuǎn)換器設(shè)計(jì)的變化,但是直到現(xiàn)在,這些變化還未被應(yīng)用于AC/DC轉(zhuǎn)換階段。
傳統(tǒng)上,四橋式開關(guān)由輸出電壓控制信號(hào)所產(chǎn)生的邏輯信號(hào)調(diào)制脈寬。原型產(chǎn)品的磚型設(shè)計(jì)選擇了一種稍微不同的技術(shù),如圖1所示。這種拓?fù)浣Y(jié)構(gòu)通過一個(gè)恒定占空比來開關(guān)主側(cè)面橋開關(guān),允許在幾乎零觸發(fā)電壓的情況下進(jìn)行恒定頻率操作(按幾乎為最大的占空比運(yùn)行),因而大大降低了開關(guān)損耗。
圖1
采用這種拓?fù)浼軜?gòu)可以確保輸出電感足夠小。在應(yīng)用于DC/DC中間總線轉(zhuǎn)換器時(shí),使用次級(jí)側(cè)面開關(guān)調(diào)制輸出電感器的伏特-秒可以獲得閉環(huán)調(diào)整。但是新的解決方案不需要閉環(huán)調(diào)整,因?yàn)榍岸说挠性碢FC將提供足夠穩(wěn)定